Course Outline

Overview of Python packages related to NLP

 

Introduction to NLP (examples in Python of course)

  1. Simple Text Manipulation
    1. Searching Text
    2. Counting Words
    3. Splitting Texts into Words
    4. Lexical dispersion
  2. Processing complex structures
    1. Representing text in Lists
    2. Indexing Lists
    3. Collocations
    4. Bigrams
    5. Frequency Distributions
    6. Conditionals with Words
    7. Comparing Words (startswith, endswith, islower, isalpha, etc...)
  3. Natural Language Understanding
    1. Word Sense Disambiguation
    2. Pronoun Resolution
  4. Machine translations (statistical, rule based, literal, etc...)
  5. Exercises

NLP in Python in examples

  1. Accessing Text Corpora and Lexical Resources
    1. Common sources for corpora
    2. Conditional Frequency Distributions
    3. Counting Words by Genre
    4. Creating own corpus
    5. Pronouncing Dictionary
    6. Shoebox and Toolbox Lexicons
    7. Senses and Synonyms
    8. Hierarchies
    9. Lexical Relations: Meronyms, Holonyms
    10. Semantic Similarity
  2. Processing Raw Text
    1. Priting
    2. Struncating
    3. Extracting parts of string
    4. Accessing individual charaters
    5. Searching, replacing, spliting, joining, indexing, etc...
    6. Using regular expressions
    7. Detecting word patterns
    8. Stemming
    9. Tokenization
    10. Normalization of text
    11. Word Segmentation (especially in Chinese)
  3. Categorizing and Tagging Words
    1. Tagged Corpora
    2. Tagged Tokens
    3. Part-of-Speech Tagset
    4. Python Dictionaries
    5. Words to Propertieis mapping
    6. Automatic Tagging
    7. Determining the Category of a Word (Morphological, Syntactic, Semantic)
  4. Text Classification (Machine Learning)
    1. Supervised Classification
    2. Sentence Segmentation
    3. Cross Validation
    4. Decision Trees
  5. Extracting Information from Text
    1. Chunking
    2. Chinking
    3. Tags vs Trees
  6. Analyzing Sentence Structure
    1. Context Free Grammar
    2. Parsers
  7. Building Feature Based Grammars
    1. Grammatical Features
    2. Processing Feature Structures
  8. Analyzing the Meaning of Sentences
    1. Semantics and Logic
    2. Propositional Logic
    3. First-Order Logic
    4. Discourse Semantics
  9.  Managing Linguistic Data 
    1. Data Formats (Lexicon vs Text)
    2. Metadata

Requirements

Basic Knowledge of Python

 28 Hours

Number of participants


Price per participant

Testimonials (1)

Provisional Upcoming Courses (Require 5+ participants)

Related Categories